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Consider the classical problem of the Knight’s tour: find an initial square in
an 8 x 8 chess board and a sequence of 63 movements for a knight such that the
knight visits every square exactly once. If we add the restriction that from the
last square in the tour the knight should be able to reach the starting square,
we have a re-entrant solution. In this note we prove that the total number of
solutions of this problem, denoted by s, is divisible by 8 and give a rough upper
bound of this quantity.

Also of interest is the number of re-entrant solutions. Each re-entrant so-
lution is naturally associated with other 63 re-entrant solutions, obtained be-
gining in the second, third, ...63"" square of the given solution, making the
corresponding movements in order to have the same sequence of squares. Not-
ing that each of the 64 re-entrant solutions obtained gives a different re-entrant
solution inverting the order, we obtain 128 re-entrant solution.

In terms of graph theory ([1]), if we say that (i) a path is a sequence of
different squares visited by a knight, (ii) a path is closed when from the last
square of the sequence the knight can go to the first one, (iii) a path is Hamilto-
nian when it includes all the squares; and observe that we are counting directed
paths, in view that we consider as different solutions to our the problem the
same sequence of squares visited in the direct and inverse order, it can be said
that s is the number of directed Hamiltonian paths.

The Knight’s tour problem has a very long history. Before computers, finding
solutions and describing its properties was a challenge attracting the attention
of many relevant mathematicians, including Euler, Legendre and Vandermonde
[2], [3]. In present times, this well known problem is chosen in order to test
computational tools for counting problems with the help of computers. As
an example, I. Wegener (in [4]) and Mc Kay (see comments to [5]) obtained
independently that the number of classes of re-entrant solutions (not taking
into account the order and the initial square) is w = 13.267.364.410.532.

The divisibility property that we present is proved elementary by considering
symmetries and rotations of the chessboard. Denote by s(ij) be the number
of tours begining in the square (i,5) (i,j = 1,2,...,8). It is clear that s =
Z?’ j—1 8(ij). Based on invariance under rotations of the chessboard we obtain
that



Symmetry with respect to the diagonal from (1,1) to (8,8), gives that s(ij) =
s(ji) (1,7 =1,2,3,4), and we conclude that

s = 4{s(11)+5(22)+5(33)+s(44)+2[s(12)+5(13)+5(14)+5(23) +5(24) +5(34)]}.

(1)
In this way, the computation of the total number of tours is reduced to the
computation of tours begining in the squares indicated in Figure 1. It remains
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Figure 1: Relevant initial squares

to see that s(11), s(22), s(33) and s(44) are even numbers. Denote s(ij, kl) the
number of tours begining in (4,5) with first visit to (k,!). The same symmetry
argument gives

s(11) = 2s(11,23),

$(22) = 2[s(22, 14) + (22, 34)]

s(33) = 2[s(33,12) + (33, 14) + s(33, 25) + (33, 45)],
s(44) = 2[s(44, 23) + (44, 25) + s(44, 36) + 5(44, 56)].

In conclusion
s = §8[s(11,23) + s(22,14) + s(22,34) + s(33,12) + s(33,14)

+5(33,25) + 5(33,45) + s(44, 23) + (44, 25) + 5(44, 36) + s(44, 56)
+5(12) + s(13) + s(14) + s(23) + s(24) + s(34)],

concluding the proof.

Let us add some comments on upper bounds for s. The computation of w
gives that 128w ~ 1.68 x 10*® is a lower bound for s.

As the number of possible movements for the knight is 168, and a (non-
directed) solution is a set of 63 different movements, we obtain that 2 x (16638)
is an upper bound for s (see [2]). This is approximately 2.35 x 10*7. Another
rough upper bound can be obtained as the product of the 64 initial squares
by the number of possible movements from each square within a tour, giving
64.2438420616816  This gives approximately 5.86 x 10%°. If we take into account



the partition of the set of solutions introduced above, and the following facts:
(a) excepting in the first case, the number of possible movements from a square
is the total of accessible squares (2,3,4,6 or 8) minus one. (b) each corner (i.e.
(1,8)) is connected with two squares with 6 possible movements (in this case
(2,6) and (3,7)) but, as the solution must visit the corner only one 5 connected
to each corner must be counted (excepting solutions begining in (1,1)). (c)
For the last three movements there are at most two possibilities. This means
that the last four factors in the product can be replaced by 1, or by 2 when
the corresponding four squares form a closed path. The case with minimum
product (taking into account (b)) is 3-2-1-1 in a corner. All other cases gives
bigger product, and the closed paths give products bigger than 12. Denote then

k= 11027319512716'

Taking into account the initial squares, and noting that for s(11) the 1 in (3, 2)
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Figure 2: Numbers of accessible squares within the tour. 1 and 5 can be in-
terchanged in squares connected with each corner. In bold are indicated four
connected squares giving the minimum possible product (then replaced by 1).

must be replaced by 4 possible movements we obtain the following bounds:

s(11) < 8k s(22) < 4k/3
s(33) < 8k/7 s(44) < 8k/7
s(12) < 3k/2  s(13) < 4k/3
s(14) < 4k/3  s(23) < 6k/5
s(24) <6k/5 s(34) < 8k/7

Summing up in (1), we obtain s < 1358k, This is approximately 1.305 x 10%.
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